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Calculation of two-dimensional and axisymmetric 
bluff-body potential flow 

By P. W. BEARMAN AND J. E. FACKRELLt 
Department of Aeronautics, Imperial College, London 

(Received 13 March 1975) 

A numerical method incorporating some of the ideas underlying the wake 
source model of Parkinson & Jandali (1970) is presented for calculating the 
incompressible potential flow external to a bluff body and its wake. The effect of 
the wake is modelled by placing sources on the rear of the wetted surface of the 
body. Unlike Parkinson & Jandali’s method, however, the body shapes that can 
be treated are not limited by the restrictions imposed by the use of conformal 
transformation. In  the present method the wetted surface of the body is repre- 
sented by a distribution of discrete vortices. Good agreement has been found 
between the pressure distributions predicted by the numerical method and the 
analytic expressions of Parkinson & Jandali for a ‘two-dimensional ’ circular 
cylinder and flat plate. A flat plate a t  incidence and other asymmetric two- 
dimensional flows have also been treated. The method has been extended to 
axisymmetric bluff bodies and the results show good agreement with measured 
pressure distributions on a circular disk and a sphere. 

1. Introduction 
No theory is capable of predicting all the aspects of the flow past bluff bodies. 

Considerable progress has been made, however, in the calculation of the time- 
averaged potential flow about simple two-dimensional bluff shapes. In  these 
solutions the thin separating shear layers are replaced by free streamlines and 
the potential flow external to these streamlines and the wetted surface of the 
body is found. The pressure on the part of the body in the separated region, the 
base pressure, has to be found from experiment. Unless the bluff body has sharp 
edges where separation is expected to occur, the separation points also need to 
be found from experiment. The positions of the free streamlines are initially 
unknown but this is overcome by specifying a velocity distribution along them 
so that their positions are fixed in the complex velocity and complex potential 
planes. The solution is found by conformally transforming from these planes to 
the physical plane. The free-streamline method of Roshko (1954) and the more 
general methods of Woods (1955) and Wu (1962)’ all using the above approach, 
show good agreement between measured and predicted time-averaged surface 
measurements on simple two-dimensional bluff bodies. 

t Present address : Centrd Electricity Generating Board, Marchwood Engineering 
Laboratories, Marchwood, Hampshire, England. 
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FIGURE 1. (a) Parkinson & Jandali transform (6) plane and (b )  physical (2)  plane. 

More recently Parkinson & Jandali (1970, referred to as P & J) have suggested 
an alternative approach for specifying the free-streamline positions using two 
surface sources. They consider a uniform flow past a circular contour in some 
transform plane [ (see figure 1). Added to this flow are two sources located 
symmetrically on the contour with images at the centre. The flow from the 
surface sources creates stagnation points on either side of the circular boundary. 
A transformation is used which maps this contour onto a slit in the physical 
plane corresponding to the wetted surface of the body. The transform is chosen 
so as to make the two stagnation points critical points in order that the flow in 
the real plane should be tangential to the upstream surface as it leaves the body. 
The sources do not model the mean flow in the wake and flow between the separa- 
ting streamlines is ignored. The purpose of the sources is to model the effect of 
the wake on the potential flow and to set the separation velocities. The P & J 
method gives just as good agreement with experiment as other free-streamline 
theories but has the advantage of being simpler to apply. This method is limited, 
however, to two-dimensional shapes and depends on the knowledge of suitable 
transformations. The aim of the work described here was to develop a method 
for calculating potential flow about bluff bodies of arbitrary shape which re- 
tained the modelling of the effect of the wake by surface sources. Inspection of 
the P & J approach shows that in the real plane the wetted surface of the body 
consists of a sheet of vorticity with two superimposed sources. The vorticity 
falls to zero at the separation points, since the flow leaves tangentially, and has 
infinities at  the source positions in order to satisfy the condition of zero normal 
velocity on the front face of the body. Abandoning conformal transformation, 
we see that the problem reduces to finding the distribution of vorticity over the 
wetted surface, together with the source positions and strengths, consistent with 
the boundary conditions of zero normal velocity on the wetted surface and given 
separation positions and base pressure. The determination of vorticity distribu- 
tions on thin aerofoils has been successfully accomplished by the use of vortex- 
lattice methods and it is proposed to use a similar approach to the present 
problem. It will be possible to check the accuracy of the numerical method, for 
simple two-dimensional shapes, by comparison with the P & J analytic 
method. 
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FIGURE 2. T h e  normal flat plate. (a) P & J model. ( a )  Vortex-lattice model, N = 5. 

2. Vortex-lattice discretization for a ‘two-dimensional’ flat plate normal 
to the free stream 

Initially we shall consider the flow about a ‘two-dimensional’ flat plate 
normal to the free stream. The vorticity y on the plate is given by 

Y(Y) = *(G?--?iA 
where V, and V, are the velocities on the back and front of the plate respectively 
(figure 2a). The P & J solution for the velocity field around a normal flat plate 
leads to the vorticity distribution 

Y(Y) = -Y(~-Yz)w-Y:)2 (2.1) 

where y = 5 1 are the edges of the plate and y = f ys are the source positions. 
We wish to obtain an approximation to this distribution by using a numerical 
discretization method. 

The vortex-lattice approach consists of replacing a continuous distribution of 
vorticity by a set of discrete vortices. For the normal flat plate we shall make 
use of symmetry to halve the number of unknowns, although this is not done in 
the general method derived from this analysis. Thus we place N vortices of 
strengths rj at y = 2hj, j = 1, ..., N ,  where h is a constant (figure 2b). The 
normal velocity at the wetted surface of the plate is then sampled and set equal 
to zero at N + 1 control points, placed a t  y = (2; - 1) h, i = 1, . . ., N + 1. A source 
of strength h is placed at one of the control points, y = (2i, - 1) h, say. When the 
normal velocity is evaluated at this point, the source is treated as if i t  were 
uniformly distributed over the surface between the two adjacent vortices with 
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density h/2h. Its normal-velocity contribution is then rrh/2h. At all other control 
points the source is treated as a point singularity and thus, on the flat plate, 
provides no contribution to the normal velocity. Then sampling the normal 
velocity at  N +  1 control points, and making the free-stream velocity unity, 
gives 

= 1 for i = 1, ..., N+1,  i k i s  

7rh 
j=l ' [ [(is-&)2-j211 h 2h 

5+- = I for i=i,. 

N 

j N 
and 

(The 27r normally associated with the velocities has been incorporated in rj and 
h.) The first N equations will determine the N unknowns rj and the last equation 
provides the value of A. The half-width of the plate in terms of h is 

( 2 N + i + ~ ) h =  I, (2.3) 

where eh is the distance between the last control point and the separation point. 
We shall use an analysis based on that employed by Doe (1971) for thin aero- 
foils to show that the vortex-lattice approximation rapidly converges to the 
correct solution provided that e = 4. 

Because the matrix of coefficients of the first N equations can be written in 
the form of the Hilbert segment, for which an inverse is known, the solution of 
these equations can be shown to be 

)I, (2.4) 
- i) (is + i - 1) ( N  + 4- i)(+ ( N -  4 +i)(-$) F' i=l (". (i - 4-j)  (i - 3 +j) 

where the notation = x!/(z - a)! is used and the factorial symbol is defined 
for non-integer values of x through the Gamma function: x! = r ( x +  1). 

The factorial function x@) has the property 

[x + 4(~-1)](~) N xu as x -+ co. 
So, for N large, (2.4) becomes, away from the edges of the plate, 

r I = -  4 j[(N+%)*-j2]iiN+1 (i, - *)* - (i - Q ) 2  - 
h r2 [(is - 4)2 -j2] {g1 ([(i - $)2 -j2] [ ( N  + #)2 - (i - $)"& 

Ifwewrite y =  2jh,y'= (2i-1)handdyJ= 2handlet 

(2.6) becomes in the limit 
(N+#)2h = 1 

7~r,/2h = - t ~ (  I - y2)*/(t~f - g). 
The right-hand side is the same as the result (2.1) of the continuous P & J model. 
Comparison of (2.3) and (2.7) shows that this result requires that E = 4. 

The limiting form (2.6) is approached very rapidly. For example, the percent- 
age error in using (x - ))(*)instead of & at x = $, which corresponds to the vortex 
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FIGURE 3. Results for flat plate with N = 5 and source at C,. (a) Vorticity 
distribution. ( b )  Pressure distribution. -, theory; 0, numerical. 

position closest to the edge of the plate, is 2 yo and this reduces to only 0.5 yo 
at the next vortex position. Similarly the difference between 2-9 and (x - $)(--I)  
at x = $, the control point nearest to the edge, is 11.4 % but at  the next control 
point it is only 0.9 %. Thus the restrictions imposed by taking the above limits 
are not severe and the discrete model should give an accurate representation 
over the whole plate, even close to the edges. Nor is it necessary to have N very 
large, as illustrated by figure 3(a), which gives results for N = 5 compared 
with the P & J analytic solution. 

Once the equations have been solved for the vortex and source strengths, the 
surface pressure is evaluated at the vortex positions. The tangential velocity at 
a vortex point is obtained by summing the contributions from the free stream, 
the vortices and from the sources. The contribution from the vortex situahd at 
the point itseIf is treated in a simiIar way to that from a source, described earlier, 
i.e. as if the vorticity were uniformly distributed over the surface between the 
two adjacent control points with density r j /2h .  For a flat plate this contribution 
is 7rrj/2h. Values of the surface pressure for N = 5 are shown in figure 3 ( b ) .  
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FIGURE 4. Vortex-lattice model for general two-dimensional body : M VOrtiCeB designated 
I?,, 4 sources A,, M + 1 control points 0,. Separation points at S,, S,. Equi-spaced distribu- 
tion shown. 

The above results were obtained by specifying equal spacing between vortex 
and control points. For thin aerofoils, Doe has extended the equi-spaced vortex 
analysis to general vortex spacing (Doe 1972), and a similar extension can be 
made for a normal flat plate. It can be shown that, in addition to the equi-spaced 
distribution, one with vortex points at 

(2.9) 

y = 1-cos[7rj/(N+1)], j = 1, ..., N ,  

y = 1-cos[~(2i-l)/2(N+1)], i = l , . . . ,N+l ,  
and control points a t  

will also give accurate results. This distribution has the advantage of allowing 
the souroes to be placed closer to the separation points if this should prove 
necessary. 

3. General two-dimensional and axisymmetric bodies 
Owing to the form of the matrix of coefficients i t  is not possible to extend the 

analysis given in § 2 to a general body shape. There is, however, no difficulty in 
applying the numerical method to other body shapes. On curved bodies the 
same distributions of vortex and control points are maintained on the wetted 
surface as on the flat plate but with the distance between points being measured 
along the surface (figure 4). Proof of the validity of the method must then come 
from a comparison with the analytic results of P & J, where this is possible, 
and from comparisons with measured pressure distributions. 

It will be noted that in $ 2  it is the position of the source on the plate that is 
specified and not the base pressure. In  the numerical procedure, the base pres- 
sure (i.e. the separation velocity V,  = (1 -cPb)*) is computed after the solution 
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for the vortex and source strength has been found. Any specified base pressure 
is obtained by iterating to the correct source position, since introducing source 
positions into the equations as unknowns would render them nonlinear. In  our 
method, the sources must always be placed at control points, so that only the 
base pressures corresponding to these positions would be obtained. However 
this restriction can be overcome by replacing each of the sources by a pair of 
sources, placed at adjacent control points as in figure 4. 

With M vortices there are M t 4 unknowns and only M + 1 control points at 
which to obtain equations. Two more equations can be obtained by specifying 
the tangential velocity at the separation points and another by assuming that 
the sum of the vortex strengths must be zero. (The latter is implicit in the 
assumption of symmetry for a normal flat plate.) We now have sufficient equa- 
tions to find the unknowns and a solution satisfying the separation conditions 
can be obtained for any set of source positions. However, because the vorticity 
and hence the pressure distribution will be slightly different for each position 
of the sources, some method is needed for identifying the correct solution (i.e. 
the solution corresponding to the P & J solution, since this is known to give good 
agreement with experiment). By a consideration of the flow in the 5 plane of 
P & J, it can be shown that if the solution with source pairs is to satisfy the same 
separation conditions as the usual P & J solution with single sources then the 
two sources in a source pair will be positive if they straddle the single-source 
position. If they are not in the correct position then the source nearest to this 
position will be positive and the other negative. Using this result a simple 
iteration scheme was devised for finding the correct positions. 

Evaluation of pressures 

The pressure distribution on the wetted surface follows from knowledge of the 
surface velocity. As already noted, tangential velocities are evaluated at vortex 
points as the sum of contributions from the free stream, the sources and the 
other vortices and from treating the inaumbent vortex as if it were distributed 
between the adjacent control points with uniform density yr  = l?!/s, where s is 
the distance between the control points. For a general surface, this last contri- 
bution has been evaluated in the form 

v, = 77 - M E 1  - f a )  d2v/dP15=o + O G -  E A S ) ,  
where ( E ,  7) are local co-ordinates tangential and normal to the surface at the 
vortex point and the suffixes 1 and 2 refer to the adjacent control points. 

The procedure for finding the normal velocity due to a source at its own 
control point is similar. 

Asymmetric two-dimensional $ow 

Flow around asymmetric bluff bodies will in general give rise to a lift force, and 
a new condition needs to be found to specify the total circulation about the 
body. This condition could employ additional empirical information or involve a 
further assumption about the flow, although it is not immediately obvious what 
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this should be. It should be noted that, because the free-streamline method does 
not model the flow within the separated region realistically, there is no simple 
relationship between the circulation about the body in the real flow and that 
about the vortex distribution representing the body. Thus the condition of zero 
total vorticity, already employed for symmetric bodies, does not necessarily 
imply zero circulation in the real flow. Arbitrarily Sxing the value of the total 
vorticity in order to avoid the introduction of an additional empirical parameter 
is necessarily only an approximation for most lifting bodies but, as shown later, 
we have found thaii good predictions of the pressures on the wetted surface can 
be obtained for many lifting bodies with the zero-total-vorticity condition re- 
tained. This is not so surprising, perhaps, since the source strengths and positions 
are chosen so as to model the given separation conditions. 

This approach can sometimes fail, however, because it becomes impossible to 
satisfy these conditions with positive sources located at the control points. That 
is, using the iteration scheme described earlier, one source pair is moved to the 
two control points next to a separation point. The source furthest away from the 
separation point is then still negative, indicating that the oorrect source position 
is closer to the separation point than the last control point. In  many cases, the 
situation can be retrieved by using the cosine distribution given earlier or by 
increasing the number of vortices. However, in some cases, with high lift gener- 
ated on the wetted surface, the number of vortices needed would be prohibitive. 
Further, we have found deteriorating agreement with experiment for bodies 
generating substantial lift. This suggests that the zero-total-vorticity condition 
is not appropriate for such cases. To obtain accurate results for these bodies an 
additional empirical parameter is required. Since we are not able to specify the 
net vorticity in the model a priori, we have chosen to use a pressure measured 
at some point on the wetted surface. 

Axisymmetric flow 
The extension of the method to axisymmetric flow is quite straightforward. The 
point singularities used in the two-dimensional method are replaced by ring 
vortices and ring sources and the appropriate induced velocities used. Otherwise 
the procedure is similar to that for symmetric two-dimensional bodies. 

4. Results 
Figure 5 presents results for a circular cylinder for two combinations of the 

base pressure and separation angle, using 29 vortices and the equi-spaced dis- 
tribution. The pressures given by the numerical method are almost identical 
with those from the P & J theory and both agree well with the experimental 
results. (It may be noted that for bodies, such as the circular cylinder, ex- 
periencing separation from a continuous curved surface, the present method, in 
common with all free-streamline theories, will give rise to the physically unreal 
situation of an infinite favourable pressure gradient at separation for certain 
combinations of the base pressure and separation position (see Woods 1955). In  
general, such cases can only be distinguished a posteriori.) 
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FIGURE 5. Circular cylinder. -, P & J theory; v,  experiment, Roshko (1954); 0,  
numerical, 29 vortices, equi-spaced, c& = - 0.96, separation at  80'; V, experiment, 
Bearman (1968); 0, numerical, 29 vortices, equi-spaced, cDb = -0.38, separation at 
117.5O. 
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FIGURE 6. Flat plate. a = 0, cDb = 1.38: - , theory; 0, numerical equi-spaced dis- 
tributicm; V ,  experiment, Fage & Johansen (1927). dl = 40°, cDb = - 1-22: - , theory ; 
0, numerical, equi-spaced; 0 ,  experiment. u = 75", cDb = -0.60: - , theory; 0, 
numericid, cosine distribution; + , numerical, cosine distribution with pressure at y = 0 
specified; V, experiment. 27 vortices used. 
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FIGURE 7. D-shaped bodies. h = 2.25, /l = 93O, cgb = -1.25: X ,  numerical, equi- 
spaced; - - , experiment Bostock & Mair (1972). h = 2.25, p = 61", cPb = -1.40: 
n, numerical, equi-spaced; -.- , experiment. h = 0.75, p = 74", cgb = -0.72: +, 
numerical, equi-spaced; -, experiment. h = 0.75, j9 = 1 0 3 O ,  c9) = -0.68: 0, numeri- 
cal, cosine distribution with pressure at d = 0.6 specified; - - -, experiment. 30 vortices 
used. (Some points omitted for clarity.) 

In  figure 6 results are given for a flat plate for three incidence angles a. 
It is possible to extend P & J's theory for a normal flat plate to include the 
inclined case (Davies 1974) and a comparison is made with this theory and with 
the experimental values of Page & Johansen (1927). The results for a normal 
flat plate are very good and with the condition of zero total vorticity retained 
in the numerical model (and implicitly in the theory) fairly good results can 
be obtained over the whole range of incidences. However there is deteriorating 
agreement between the experimental results and the theoretical and numerical 
results with increasing a and, at  a = 75", the cosine distribution has to be used 
since the upstream source pair is very close to the separation point. For compa,ri- 
son, for this particular case results obtained by dropping the zero-vorticity 
condition and instead specifying the pressure at y = 0 are included. These show 
better agreement with experiment and give some indication of the approxima- 
tion inherent in the use of the zero-vorticity condition. 

Figure 7 gives numerical results for two D-shaped bodies with asymmetric 
separation, compared with the experimental results of Bostock & Mair (1972). 
The equi-spaced distribution has been employed and the zero-total-vorticity 
condition applied, except for the case with h = 0.75 and cpb = 103". In  this case, 
the source pair nearest to the separation point on the curved surface had to be 
placed so close to the separation point that the inner member was still negative 
when 60 vortices in a cosine distribution were used. Hence the results shown 
were obtained by specifying the pressure at  d = 0.6. 
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FIGURE 8. Square body with rounded corners. a = 0, Re = 4.4 x lo6, c p b  = - 0.55: 
--V-, experiment, Polhamus et al. (1959); 0, numerical, equi-spaced, separation at 
d = 0.53 and d = 3.06. u = 20°, Re = 6.2 x los, Cllb = -0 .85:  --A-, experiment; 0 ,  
numerical, cosine distribution, separation at d = 0.50 and d = 2-41. a = 30°, Re = 6.2 x 
lo5, c@b = 0.95: - - X - -, experiment; 0, numerical, cosine distribution, sepmation at 
d = 0.50 and d = 2.21. 30 vortices used. 

Somewhat more complicated pressure distributions can be found in the results 
of Polhamus, Geller & Grunwald (1959) for a square cylinder with rounded 
corners. These results cover a wide range of Reynolds number and incidences, 
yet the numerical method has given fairly good agreement with them. Some 
examples are given in figure 8. 

Figure 9 shows results for axisymmetric flow past a circular disk. Agreement 
with the experimental values of Fail, Lawford & Eyre (1957) is very good using 
only 18 vortex rings. Figure 10 gives results for a sphere for two values of the 
Reynolds number. Again agreement with experiment (Fage 1937) is good. These 
last two sets of results illustrate that the use of sources to model separation 
conditions works as well for axisymmetric bluff-body flow as for two-dimensional 
flow. 

An advantage of the vortex-lattice approach over other possible numerical 
techniques, such as the surface-source method of Hess & Smith (1967), is that, 
because only a few vortices are needed for accurate results, computing times are 
short. The results given required an average time of about 5: s on a CDC 6400 
and a core size of 21K. 

5. Conclusions 
The method presented here is a generalization of Parkinson & Jandali’s wake 

source model. It extends the application of their model to arbitrary two-dimen- 
sional and axisymmetric bluff body shapes by representing the wetted surface 
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FIGURE 9. Circular disk. V , experiment, Fail et al. (1967); 
0, numerical, 18 vortex rings, cPb = -0.36. 

FIGURE 10. Sphere. V, experiment, Fage (1937); Re = 1.1 x lo5; 0,  numerical, 18 vortex 
rings, cPh = - 0.4, separation at 80"; 7 ,  experiment, Re = 4.2 x los; 0, numerical, 18 
vortex rings, cpb = 0.12, separation at 130'. 

by a distribution of discrete point vortices. In  axisymmetric flow ring vortices 
and ring sources are used. The method is not restricted to a body in isolation and 
it would be possible, for example, to calculate the effects of the presence of the 
ground or of blockage in a wind tunnel by using a system of images. 

Results obtained by the numerical technique agree closely with the analytic 
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theory, for bodies to which the theory can be applied, and give good agreement 
with experiment for the other bodies examined, including several lifting bodies. 
There is deteriorating agreement as the lift increases, owing to the imposition of 
the zero-total-vorticity condition, and in some cases it is necessary to introduce 
an additional experimental parameter, the pressure at a point on the wetted 
surface, to allow this condition to be relaxed. The pressure distributions predicted 
for axisymmetric bluff bodies are in good agreement with experiment. 

The authors would like to thank Dr G. A. Carr-Hill for suggesting the use of 
the vortex-lattice method. One of the authors (J.E.F.) was supported by the 
Donald CampbelI Research Fellowship. 
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